If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+20q+24=0
a = 4; b = 20; c = +24;
Δ = b2-4ac
Δ = 202-4·4·24
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4}{2*4}=\frac{-24}{8} =-3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4}{2*4}=\frac{-16}{8} =-2 $
| 12.5*b=32 | | 10x+15=80 | | X+7=4(x+2) | | 8x^+4x=0 | | r+(-43)=53 | | (9x2+6x+10)+(8x2+8X)= | | -10-6(1-5n)=-16-4n | | a/6+2=10 | | 30÷w=5 | | s+(-40)=10 | | (3x/5)-3(x+17)=x | | 2x+8x=2x | | 3−11x=−118 | | k+(-23)=-100 | | 123=f-77 | | Y/2-5y/6+1/3=1-2 | | 3y-15=-5+3 | | 6x^+7x=-5x | | x/2+6=30 | | 5+4w=-21 | | 19x÷90-25= | | x2+6=3-0 | | 6x^+7x=-5 | | h/3+2=4 | | b+(-73)=-58 | | s+-686=-353 | | h+1/2=-3/8 | | -5x-10=3x+8 | | 5y-1y=-3 | | s/2+5=8 | | 15(x+-30)=25 | | 5^2x-4=1/125 |